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Abstract

In this paper, we study the invariance of the toric structure for the fiber products
under toric flips. We give some useful criteria and carry it out in the 3-dimensional case.
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1 Introduction
For any two schemes X and Y over a scheme S, the fiber product X ×S Y exists and is unique
up to isomorphisms. The basic applications of fiber products contain the definition of a fiber of
a morphism and the notion of base extension, which develop all concepts of algebraic geometry
in a relative context. The theory of toric varieties has caught lots of attentions over the past
few decades. Besides its many fruitful applications to algebraic geometry, singularity theory
and combinatorics, it also provides lots of workable examples in algebraic geometry, due to its
highly computability. In particular, it has been used to test some difficult conjectures arising
from algebraic geometry — mostly because that it provides a quite different yet elementary
way (usually combinatorial way) to see many examples and phenomena in algebraic geometry.

It is natural to ask “Is the fiber product of two toric varieties still toric?” Unfortunately,
the answer is “NO”. For example, let σ = ⟨e1, e2⟩R+ and σ′ = ⟨e1, e1 + e2⟩R+ which associate
two affine toric varieties Uσ = SpecC[xe∨1 , xe∨2 ] and Uσ′ = SpecC[xe∨1 , xe∨2 , xe∨1 −e∨2 ]. It is easy to
see that

Uσ′ ×Uσ Uσ′ = SpecC[u, v, w, w′]/⟨u− vw, v(w − w′)⟩

and ⟨u− vw, v(w − w′)⟩ is not a prime ideal, so Uσ′ ×Uσ Uσ′ is not a toric variety.

On Birational Geometry, the Minimal Model Program plays an important role, in which
the key ingredients consist of flips and flops, so it is a good choice to study toric fiber products
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under flips and flops first. In the case of a toric flip:

TN ⊆ XΣ XΣ′ ⊇ TN

TN ⊆ XΣ0

ϕ

f

ϕ′
,

we observe that the fiber product X := XΣ ×XΣ0
XΣ′ is a toric variety if and only if (1): X

is irreducible, (2): X is reduced and (3): the graph closure Γf is a toric variety. Indeed, the
identity map of 0∨ ! 0∨ induces the identity map of φ|TN

, φ′|TN
: TN ! TN , so TN×TN

TN ⊆ Γf .
Since XΣ is irreducible, Γf is also irreducible and thus TN ×TN

TN = Γf . If X is irreducible
and reduced, then Γf = Xred = X is a toric variety.

The goal of this paper is to study the statements (1), (2), and (3) separately. For (3), I
give the equivalent statements only involving dual cones.

Theorem 1.1. Let Σ and Σ′ be two different subdivisions of a fan Σ0. Let f : XΣ 99K XΣ′

be the birational map induced by XΣ ! XΣ0  XΣ′ . If we consider the coarsest common
subdivision Σ̃ of them, then the following statements are equivalent:

(i) XΣ̃ ! XΣ ×XΣ′ is a closed immersion,

(ii) XΣ̃ ! Γf is a closed immersion,

(iii) XΣ̃ ≃ Γf ,

(iv) Γf is a toric variety.

As an application, I give an example whose graph closure is a toric variety (See Theorem
2.2). For (1), I show that X is irreducible for all toric flips.

Theorem 1.2. If we consider the local toric flip

XΣ XΣ′

XΣ0

defined by the relation

u :=
r∑

i=0

aivi =
s∑

i=0

biwi,

then X := XΣ ×XΣ0
XΣ′ is irreducible.

As a corollary, I find that the normalization of the fiber product X is XΣ̃, where Σ̃ is the
coarsest common subdivision of Σ and Σ′ (See Corrollary 3.1). For (2), in the 3-dimensional
case, I reduce the problem to the local case (See Theorem 4.1) and give a numerical criterion
for them. Let U00 be a first affine local chart.
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Theorem 1.3. If g = gcd(a0, a1) and ai = ga′i, then the following statements are equivalent:

(iv) U00 is reduced.

(v) For all 0 ≤ λ ≤ a′0a
′
1, there exists a non-negative integer y ≤ λ/a′0 such that

{gλ}b ≥ g · {λ− a′0y}a′1 ,

where {n}m denotes the remainder of n divided by m.

(vi) There exists a non-negative integer y0 ≤ b/a′0 such that a′1|(b− a′0y0), or equivalently,

{g − 1/a′0}a′1 ≤ b/a′0.

This criterion gives us an easy way to construct examples whose fiber products are toric or
not (See Remark 4.1). This paper is organized as follows. In section 2, we study the statement
(3); in section 3, we study the statement (1) and in section 4, we study the statement (2).

2 Graph closures

2.1 Warm-up
Let Σ be the fan in N and let Σ′ be the subdivision of Σ. The identity map of N induces the
toric morphism φ : XΣ′ ! XΣ. We claim that if Σ′ ̸= Σ, then

X := XΣ′ ×XΣ
XΣ′

is not irreducible, so it is not a toric variety.

Suppose not, let Z and S be the exceptional locus of XΣ′ and XΣ respectively via φ. We
find that since X is assumed to be irreducible,

Z1 := (Z ×S Z)red ↪! Xred = TN ×TN
TN = ΓidXΣ′

= XΣ′

can be regarded as a closed subscheme over S, and thus Z1 ⊆ Z. Picking τ ′ ∈ Σ′ \ Σ with
smallest dimension among Σ′ \ Σ , if τ ∈ Σ is the smallest cone containing τ ′, then V (τ ′) ⊂ Z

with the same dimension as Z and V (τ) ⊂ S. This implies that Z1 contains an open subset

TN(τ ′) ×TN(τ)
TN(τ ′) ⊆ Z ×S Z,

where TN(τ) = Hom(τ⊥ ∩M,C×). Since TN(τ ′) ! TN(τ) is TN(τ ′)-equivariant, g : TN(τ ′) ×TN(τ)

TN(τ ′) ! TN(τ ′) has same fiber dimension, and thus

dimTN(τ ′) ×TN(τ)
TN(τ ′) = dimTN(τ ′) + dim g−1(z) = dimZ + dim g−1(z) > dimZ

for any z ∈ TN(τ ′). But TN(τ ′) ×TN(τ)
TN(τ ′) ⊆ Z1 ⊆ Z, which leads to a contradiction.
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2.2 A criterion of graph closures being toric
Theorem 2.1. Let Σ and Σ′ be two different subdivisions of a fan Σ0. Let f : XΣ 99K XΣ′

be the birational map induced by XΣ ! XΣ0  XΣ′ . If we consider the coarsest common
subdivision Σ̃ of them, then the following statements are equivalent:

(i) XΣ̃ ! XΣ ×XΣ′ is a closed immersion,

(ii) XΣ̃ ! Γf is a closed immersion,

(iii) XΣ̃ ≃ Γf ,

(iv) Γf is a toric variety.

Proof: Consider the following three diagrams:

XΣ̃ TN

XΣ ×XΣ0
XΣ′ TN ×TN

TN

XΣ XΣ′ TN TN

XΣ0 TN

f̃ ′f̃

π π′

and
XΣ ×XΣ0

XΣ′

XΣ̃ XΣ ×XΣ′

TN TN ×TN
TN .

(f̃ ,f̃ ′)

Since XΣ̃ ! XΣ ×XΣ′ is proper which is closed, we have

XΣ̃ = TN −! TN ×TN
TN = Γf .

Note that XΣ̃ ! Γf is surjective since it is birational and closed. We can get that

XΣ̃ ! XΣ ×XΣ′ is closed immersion ⇐⇒ XΣ̃ ! Γf is closed immersion ⇐⇒ XΣ̃ ≃ Γf .

Moreover, if Γf is a toric variety, then

XΣ̃ ! Γf , Γf ! XΣ, Γf ! XΣ′

are birational toric morphisms. We may identify Γf = XF for some fan F ⊂ N . Then F is
subdivision of Σ and Σ′, and Σ̃ is subdivision of F , so F = Σ̃, i.e. XΣ̃ ! Γf is an isomorphism.
Hence

XΣ̃ ≃ Γf ⇐⇒ Γf is a toric variety.
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Remark 2.1. It is clear that XΣ̃ ! XΣ ×XΣ′ is a closed immersion if and only if

(σ∨ ∩M) + (σ′∨ ∩M) = (σ ∩ σ′)
∨ ∩M (1)

for all (maximal cone) σ, σ′ contained in some cone of Σ0.

2.3 The case of flips
Given a relation

r∑
i=0

aivi =
s∑

j=0

bjwj,

where ai, bj ∈ N, vi, wj ∈ N = Zr+s+1 are primitive vectors, and {v0, . . . , vr, w0, . . . , ws−1} form
a Q basis of N ⊗Z Q, the two distinct simplicial subdivisions of ⟨v0, . . . , vr, w0, . . . , ws⟩+ define
a local flip f : XΣ 99K XΣ′ over XΣ0 as in [Rei83], where Σ, Σ′, Σ0 are defined by their top cones
as follows:

Σ(r + s+ 1) = {σj = ⟨v0, . . . , vr, w0, . . . , ŵj, . . . , ws⟩+ | 0 ≤ j ≤ s} ,
Σ′(r + s+ 1) = {σ′

i = ⟨v0, . . . , v̂i, . . . , vr, w0, . . . , ws⟩+ | 0 ≤ i ≤ r} ,
Σ0(r + s+ 1) = {τ = ⟨v0, . . . , vr, w0, . . . , ws⟩+} .

In the special case of r = s = 1, we can prove that Γf always is a toric variety.

Theorem 2.2. If Σ and Σ′ are two simplicial fans in N ⊗Z R defined by

u := a0v0 + a1v1 = b0w0 + b1w1,

where ai, bj ∈ N, then Γf is a toric variety.

Proof: By Theorem 2.1, it suffices to check (1) holds when (σ, σ′) = (σj, σ
′
i) for i, j ∈ {0, 1}.

In this case, σ ∩ σ′ = ⟨v̂i, ŵj, u⟩+. Let {i, k} = {0, 1}.

• If j = 1, then (σ ∩ σ′)∨ is generated by rays

v∨i , aiv
∨
k − akv

∨
i , w∨

0 .

Hence

(σ ∩ σ′)∨ ∩M = ⟨v∨i , aiv∨k − akv
∨
i ⟩+ ∩M + ⟨w∨

0 ⟩+ ∩M

⊆ (σ∨ ∩M) + (σ′∨ ∩M)

• If j = 0, by the linear relation vk = (u− aivi)/ak and w1 = (u− b0w0)/b1 we have

(σ ∩ σ′)∨ \ (σ∨ ∪ σ′∨) = ⟨−vi,−w0, vk, w1, u⟩∨+ = ⟨−vi,−w0, u⟩∨+,
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which is generated by rays
v∨k , aiv

∨
k − akv

∨
i , −w∨

0 .

With a similar argument,

(σ ∩ σ′)∨ \ (σ∨ ∪ σ′∨) ∩M ⊆ (σ′∨ ∩M) + (σ∨ ∩M) .

Remark 2.2. Theorem 2.2 may not hold in general for r ≥ 2. For example, consider two
simplicial fans defined by the relation

3v0 + 2v1 + v2 = 3w0 + 2w1 + w2,

and two cones σ = σ0, σ′ = σ′
0. We find that σ∨ ∩M + σ′∨ ∩M has generating set S consisting

of
(2, 0, 0, 0, 3) (0, 0, 1, 0, 0) (0, 0, 2, 0, 1) (−1, 0, 3, 0, 0)

(−1, 1, 1, 0, 0) (0, 3, 0, 2, 0) (−2, 3, 0, 0, 0) (−1, 2, 0, 0, 0)

(0, 1, 0, 0, 0) (1, 0, 0, 1, 0) (0, 1, 0, 0, 1) (1, 0, 0, 1, 0)

(0, 0, 1,−1, 2) (0, 0, 0,−1, 0) (0, 0, 0,−1, 1).

Note that (−1, 2, 0,−1, 2) ∈ (σ ∩ σ′)∨ ∩ M but not in Z≥0S. Hence Γf is not a toric variety,
although it is the closure of the torus.

3 Irreducibility of fiber products under toric flips
Theorem 3.1. If we consider the local toric flip

XΣ XΣ′

XΣ0

defined by the relation

u :=
r∑

i=0

aivi =
s∑

i=0

biwi,

then X := XΣ ×XΣ0
XΣ′ is irreducible.

Proof: By symmetry, we only need to prove that Uσ ×Uσ0
Uσ′ is irreducible where σ ∈ Σ

and σ′ ∈ Σ′ are the simplicial cones spanned by β = {v0, . . . , vr, w0, . . . , ws−1}, and β′ =

{v1, . . . , vr, w0, . . . , ws} respectively and σ0 = σ + σ′. Note that

σ∨ ∩ (β \ vi)⊥, σ′∨ ∩ (β′ \ wj)
⊥ ⊆ σ∨

0 = σ∨ ∩ σ′∨, ∀i ∈ {0, 1, . . . , r}, j ∈ {0, 1, . . . , s}.

Let F be the face of σ∨ generated by {σ∨ ∩ (β \ wi)
⊥}s−1

i=0 and F ′ be defined similarly.
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Let X be the set of generators of the cone σ∨
0 ∩M and let Y , Z ⊂ M such that X ∪ Y ,

X ∪Z are the sets of generators of the cones σ∨ ∩M , σ′∨ ∩M respectively. Let I, J , K be the
toric ideals such that

C[X ] = C[X]/K, C[X ∪ Y ] = SpecC[X,Y ]/I, C[X ∪ Z ] = SpecC[X,Z]/J.

Clearly, the fiber product Uσ ×Uσ0
Uσ′ is the spectrum of the ring

C[X,Y ]/I ⊗C[X]/K C[X,Z]/J ≃ C[X,Y, Z]
/
I + J .

We claim that
C[X,Y, Z]

/√
I + J ≃ C[X ∪ Y ∪ Z ],

which is a domain and thus the theorem follows. The claim is equivalent to the statement
that

√
I + J is the “toric ideal” L of X ∪ Y ∪ Z . Since I + J ⊆ L and L is a prime ideal,√

I + J ⊆
√
L = L. For the converse statement, we discuss it through several steps, see

Figure 1.

Step 0. Let xi ∈ Z≥0X , yi ∈ Z≥0Y and zi ∈ Z≥0Z. Assume that there exists a relation

x1 + y1 + z1 = x2 + y2 + z2. (2)

For simplicity, let Xi, Yi, Zi denote the variables corresponding to the vectors xi, yi, zi ∈ M

respectively. For i = 1, 2, if there exists ki ∈ N such that

Xki
i (X1Y1Z1 −X2Y2Z2) ∈

√
I + J,

then X1Y1Z1 −X2Y2Z2 ∈
√
I + J , since

(X1Y1Z1 −X2Y2Z2)
k1+k2+1 =

k1+k2∑
k=0

(
k1 + k2

k

)
(X1Y1Z1 −X2Y2Z2)(X1Y1Z1)

k(X2Y2Z2)
k1+k2−k

and either k ≥ k1 or k1 + k2 − k ≥ k2 holds. Hence, if necessary, we may replace (2) by two
relations

(k1 + 1)x1 + y1 + z1 = (k1x1 + x2) + y2 + z2, (2.1)
(k2x2 + x1) + y1 + z1 = (k2 + 1)x2 + y2 + z2. (2.2)

Of course, the pair (x1, x2) can be replaced by any pair in {x1, y1, z1}×{x2, y2, z2}. This process
of replacements will occur frequently in the following algorithm of finding such pair (k1, k2).

Step 1. If x1, x2 ∈ σ∨
0 \ (∂σ∨ ∩ σ′∨), then we take k1, k2 ∈ N such that xi +

1
ki
zj ∈ σ∨

0 for all
j ∈ {1, 2}, i.e., xij := kixi + zj ∈ Z≥0X . The relation (2.1) can be decomposed as

k1x1 + z1 = x11

x12 = k1x1 + z2

x11 + x1 + y1 = x12 + x2 + y2.
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The first two relations hold in X ∪ Z, and the last one is the relation in X ∪ Y . Hence, the
binomial corresponding to the relation (2.1) is in I + J . A similar argument holds for (2.2).

Step 2. We consider either x1 ∈ (∂σ∨ ∩ σ′∨) \ {0} or x2 ∈ (∂σ∨ ∩ σ′∨) \ {0}. For such
xi ∈ (∂σ∨ ∩ σ′∨) \ {0}, we take ki ∈ N such that kixi = x′

i + z′i where x′
i ∈ σ∨

0 \ (∂σ∨ ∩ σ′∨) and
z′i ∈ F ′. Without loss of generality, we assume that x1 ∈ (∂σ∨ ∩ σ′∨) \ {0}.

If x2 ̸= 0, then either x2 ∈ (∂σ∨ ∩ σ′∨) \ {0} or x2 ∈ σ∨
0 \ (∂σ∨ ∩ σ′∨). For the latter one,

we take k2 as in Step 1 and then replace (2) with (2.1)+(2.2) by Step 0, so that we can reduce
it to Step 1.

If y2 /∈ F , then we take k2 ∈ N such that k2y2 = x′
2 + y′2 where y′2 ∈ F and x′

2 ∈
σ∨
0 \ (∂σ′∨ ∩ σ∨) and replace (2) by (2.1) and (2.2) on the pairs (x1, y2) and (k1, nk2) for n ∈ N

as in Step 0. Now we can reduce it to Step 1 for (2.1) and produce the corresponding equations
(2.1.1) and (2.1.2). For (2.2), we can rewrite it (modulo I) as

x1 + (n(y′2 + x′
2) + y1) + z1 = x2 + n(y′2 + x′

2) + y2 + z2.

and replace it by
x1 + (y1 + nx′

2) + z1 = x2 + (y2 + nx′
2) + z2. (3)

When we take n ≫ 0 such that yi+nx′
2 ∈ Z≥0X (for i = 1, 2), it is similarly reduced to Step 1.

By symmetry, the similar argument can be applied for z2 /∈ F ′.

In this step, the remaining case is when x2 = 0, y2 ∈ F , z2 ∈ F ′, but this is vacuous.
Otherwise, F +F ′ = u⊥∩(σ∩σ′)∨ is the face of (σ∩σ′)∨, which implies x1 ∈ Z≥0X ∩(F +F ′) =

{0} (! ).

Step 3. The remaining job for us is when either x1 = 0 or x2 = 0. Without loss of generality,
we assume that x2 = 0.

If y2 /∈ F or z2 /∈ F ′, then we have x1 ̸= 0 or y1 /∈ F or z1 /∈ F ′, since F + F ′ is the face of
(σ ∩ σ′)∨. Use the same decomposition of yi or zi as in Step 2 and reduce it to the case of x1

and x2 being nonzero.

If y2 ∈ F and z2 ∈ F ′, then we have x1 = 0, y1 ∈ F and z1 ∈ F ′, since F + F ′ is the face
of (σ ∩ σ′)∨. Let σ∨ ∩ (β \ wj)

⊥, σ′∨ ∩ (β′ \ vi)⊥ be generated by ỹj, z̃i ∈ M respectively. Note
that {ỹj, z̃i | 0 ≤ j ≤ s − 1, 1 ≤ i ≤ r} is a linearly independent set over R, otherwise, there
exist pj, qi ∈ R such that

s−1∑
j=0

pj ỹj +
r∑

i=1

qiz̃i = 0,

and then pairing with wj and vi, we get pj = qi = 0. Hence, y1 + z1 = y2 + z2 implies y1 = y2

and z1 = z2, and thus
Y1Z1 − Y2Z2 = 0 ∈ I + J.
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relation

Step 2

x3−i ̸= 0

y3−i /∈ F or z3−i /∈ F

contradiction

x3−i ∈ σ∨
0 \ (∂σ∨ ∩ σ′∨)

x3−i ∈ (∂σ∨ ∩ σ′∨) \ {0}

Step0

(2.1)

(2.2)

Step0

(2.1)

(2.2)(3)

Step 1 Step 3

y3−i /∈ F or z3−i /∈ F

x3−i = 0

DONE

If x1, x2 ∈ σ∨
0 \ (∂σ∨ ∩ σ′∨) If xi = 0if xi /∈ (∂σ∨ ∩ σ′∨) \ {0}

Yes

No

No

Yes

Yes

Same argument

No

Figure 1: The flow chart for the proof.

Remark 3.1. The similar proof works on the local toric flips with general exceptional locus
S ⊆ XΣ0 as in [Rei83].

Corollary 3.1. Under the assumption in theorem 3.1, the normalization of the fiber product
X is XΣ̃, where Σ̃ is the coarsest common subdivision of Σ and Σ′. Moreover, if Σ and Σ′

satisfy the condition (1), then Xred is already normal and Xred = XΣ̃.

Proof: Recall that the integral closure of the semi-group ring C[S] in C[M ] is C[Ssat], where
Ssat is the saturation of S in the lattice M . Since u =

∑
aivi =

∑
biwi,

R≥0(X ∪ Y ∪ Z) = σ∨ + σ′∨ = (σ ∩ σ′)∨,

and thus
Z≥0(X ∪ Y ∪ Z)sat = (σ ∩ σ′)∨ ∩M.

Moreover, the condition (1) implies that X ∪Y ∪Z generate (σ∩σ′)∨∩M , and thus Xred = XΣ̃

is normal.

4 The property about being reduced
In this section, we focus on the case of r = s = 1. Consider

u := a0v0 + a1v1 = bw0 + w1,

where {v0, v1, w1} forms a basis of N = Z3 and b = a0+ a1− 1. For the sake of convenience, let
Uij := Uσi

×Uσ Uσ′
j
. By Theorem 2.1, Theorem 2.2 and 3.1, we get that the following statements

are equivalent:
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(i) X = XΣ ×XΣ0
XΣ′ is toric variety,

(ii) X = XΣ̃,

(iii) X is reduced.

We intend to study when X is reduced. Since “being reduced” is a local property, we may
work on one affine piece.

Lemma 4.1. If g = gcd(a0, a1) and ai = ga′i, then the following statements are equivalent:

(iv) U00 is reduced.

(v) For all 0 ≤ λ ≤ a′0a
′
1, there exists a non-negative integer y ≤ λ/a′0 such that

{gλ}b ≥ g · {λ− a′0y}a′1 ,

where {n}m denotes the remainder of n divided by m.

(vi) There exists a non-negative integer y0 ≤ b/a′0 such that a′1|(b− a′0y0), or equivalently,

{g − 1/a′0}a′1 ≤ b/a′0.

Proof: For simplicity, we assume that v0, v1, w0 = e1, e2, e3 and calculate the dual cone, as
illustrated in the following figure.

Note that the coordinates in the figure only represent points on that ray, not that these six
points lie in the same plane. Now, we use the same notations in the proof of Theorem 3.1. We
can get that U00 is reduced if and only if X1Y1Z1−X2Y2Z2 ∈ I+J with x1+y1+z1 = x2+y2+z2.
The key point is that the generating set Y can be selected to be {y = (0, 0,−1)}.

For any z ∈ Γ := M ∩ (⟨(0, 1, 0), (−a1, a0, 0), (0, b, a1)⟩+ \ ⟨(0, 1, 0), (−a1, a0, 0)⟩+), it is
clear that z′ = y + z ∈ Z≥0(X ∪ Z). If U00 is reduced, then Y Z − Z ′ ∈ I + J . Note that an
element in I + J containing the term Y is of the form∑

i

ci(Y
niX1,i −X2,i)Y

miZi +
∑
j

djY
nj(X3,jZ3,j −X4,jZ4,j),
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where niy+ x1,i = x2,i, x3,j + z3,j = x4,j + y4,j, and ci, dj ∈ C. Since Y Z −Z ′ is not divided by
Y , we conclude that z ∈ (Z≥0X \ 0) + Z≥0Z. Moreover, let z0 = z ∈ Γ and write z0 = x1 + z1

where x1 ∈ Z≥0X \ 0 and z1 ∈ Z≥0Z. If z1 ∈ Γ, then we can again write z1 = x2 + z2 where
x2 ∈ Z≥0X \ 0 and z2 ∈ Z≥0Z. We keep doing this process until zi+1 does not lie in Γ. We
claim that this process will terminate. Otherwise, since the 2nd and 3rd coordinates of a lattice
point in Z≥0(X ∪ Z) are non-negative integers, the 2nd and 3rd coordinates of {zi}i≥0 form
two sequences of decreasing non-negative integers and thus will be stable. Similarly, the 1st
coordinates of {zi}i≥0 forms a sequence of decreasing integer. Pick n ∈ N such that {zi}i≥n has
the same 2nd and 3rd coordinates, which implies that zn + Ze∨1 ⊆ Γ and contradicts the fact
that {zi}i≥0 is an infinite sequence. Hence we conclude that

Γ ⊆ (Z≥0X \ 0) + ⟨(0, 1, 0), (−a1, a0, 0)⟩ ∩M (4)

if U00 is reduced.

Conversely, we claim that if (4) holds, then U00 is reduced. We define

Γ′ = ⟨(0, 1, 0), (−a1, a0, 0)⟩ ∩M.

For z ∈ Γ, say z = x+ z′′ where x ∈ Z≥0X and z′′ ∈ Γ′, let z′ = y + z ∈ Z≥0(X ∪ Z) and then
z′ = (x+ y) + z′′. If (x+ y) /∈ Z≥0X , then

x+ y + z′′ ∈(⟨(0, 0,−1), (1, 0, 0), (0, 1, 0)⟩+ \ ⟨(1, 0, 0), (0, 1, 0))⟩+) + Γ′

⊆⟨(0, 0,−1), (1, 0, 0), (−a1, a0, 0)⟩+ \ ⟨(1, 0, 0), (−a1, a0, 0)⟩+,

which contradicts to z′ ∈ Z≥0(X ∪ Z). Hence x′ := x+ y ∈ Z≥0X , and thus

X ′ −XY ∈ I,XZ ′′ − Z,X ′Z ′′ − Z ′ ∈ J =⇒ Y Z − Z ′ ∈ I + J.

Suppose that there exists a relation

x1 + n1y + z1 = x2 + n2y + z2

such that X1Y
n1Z1 − X2Y

n2Z2 /∈ I + J for some n1, n2 ≥ 0. We may assume that n2 = 0

by eliminating min{n1, n2}y, and n1 ≥ 0 is the smallest integer such that the above relation
holds (note that n1 ̸= 0). We find that z1 /∈ Γ, otherwise, we can replace the original relation
with x1 + (n1 − 1)y + z′1 = x2 + z2, where z′1 = y + z1. By the same proof as above, we have
x1 + n1y1 ∈ Z≥0X , and thus X1Y

n1Z1 −X2Z2 ∈ I + J (! ).

After determining the equivalent statement for (iv), it suffices to show that Γ ⊆ (Z≥0X \
0) + Γ′ is equivalent to the condition (v). Note that Γ ⊆ (Z≥0X \ 0) + Γ′ is equivalent to
Γ ⊆ Z≥0X + Γ′. Given z = (−p0, p1, q) ∈ Γ, that is, p0 ≥ 0 q ≥ 0 and a1p1 ≥ a0p0 + bq, we
want to find a lattice point z′′ = (−α, β, 0) ∈ Γ′ such that z − z′′ = (α− p0, p1 − β, q) ∈ Z≥0X ,
that is, there exist α, β ≥ 0 such that

a1β ≥ a0α, α ≥ p0, β ≤ p1, k := −a0p0 + a1p1 − bq ≥ a1β − a0α. (5)
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Note that if (α, β) satisfies (5), then (α, ⌈a0α
a1

⌉) satisfies (5). Thus, (5) is equivalent to the
existence of an integer α ∈ [p0, a1p1/a0] such that

k ≥ a1

°
a0α

a1

§
− a0α = g · {−a′0α}a′1 .

Hence, Γ ⊆ Z≥0X + Γ′ is also equivalent to the statement that for all p0, q0 > 0 such that
a′1p1 ≥ a′0p0, we have

P (p0, q0) : ∃p0 ≤ α ≤ a1p1
a0

such that {g(a′1p1 − a′0p0)}b ≥ g · {−a′0α}a′1 .

Note that if a1p1/a0 − p0 ≥ a′1, then there exists an integer α ∈ [p0, a1p1/a0] such that a′1|α,
ensuring that the above inequality holds. Therefore, we only need to check it for λ := a′1p1 −
a′0p0 ≤ a′0a

′
1. We take x0, x1 ∈ N such that a′0x0 − a′1x1 = 1. Since P (p0, q0) holds if and only

if P (p0 + a′1, p1 + a′0) holds, we only need to check that (p0, q0) = (λx0, λx1) for 0 ≤ λ ≤ a′0a
′
1.

Let α = λx0 + y. Clearly, P (λx0, λx1) can be reformulated as

∃ 0 ≤ y ≤ a′1 · λx1

a0
− λx0 =

λ

a0
such that {gλ}b ≥ g · {−a′0(λx0 + y)}a′1 = g · {λ− a′0y}a′1 .

This proves that (iv) ⇐⇒ (v).

For (v) =⇒ (vi), simply by taking λ = b.

For (vi) =⇒ (v), let λ = pb+ q(a′0 + a′1) + r where

0 ≤ q ≤ g − 1 and 0 ≤ r ≤ a′0 + a′1 − 1− δq,g−1.

We take y = py0 + q ≤ pb/a′0 + q ≤ λ/a′0 and get that

{gλ}b = {gr + q}b = gr + q,

since gr + q ≤ g(a′0 + a′1 − 1) + g − 1 = b and the equality will not hold. On the other hand,

{λ− a′0y}a′1 = {p(b− a′0y0) + qa′0 + r − qa′0}a′1 = {r}a′1 .

Hence
{gλ}b = gr + b ≥ g{r}a′1 = {λ− a′0y}a′1 .

Remark 4.1. Note that the condition (vi) is equivalent to that

∃y0, y1 ∈ Z≥0 such that b = a′0y0 + a′1y1, (vi’)

so the condition (vi) is symmetric in a′0 and a′1, that is, U00 is reduced if and only if U01 is
reduced.

By the elementary number theory, if b ≥ (a′0 − 1)(a′1 − 1), then the condition (vi’) will
hold. According to the theorem below, in this case, the fiber product X is a toric variety.

It is clear that if (a′0, a′0 + a′1) satisfies (vi’), then (a′0, a
′
1) also satisfies (vi’). In other word,

if (a′0, a
′
1) does not satisfy (vi’), then (a′0, a

′
0 + a′1) also doesn’t satisfy (vi’). Hence we can

construct the fiber product X, which is not a toric variety in this case; for example, taking
(a0, a1) = (3, 5 + 3n) for n ∈ N.
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The main result of this section is the following theorem.

Theorem 4.1. X is reduced if and only if U00 is reduced.

Before giving the proof, we have to show the following lemma.

Lemma 4.2. If π : X ! XΣ and I is the nilradical ideal of OX , then

π∗I = Riπ∗I = Riπ∗OX = 0

for all i > 0, and π∗OX = OXΣ
. Similar statement holds for π′ : X ! XΣ′ .

Proof: Since π is a proper morphism with fiber dimension ≤ 1, by the formal function theorem,
Riπ∗I = Riπ∗OX = 0 for all i > 1. For i = 1, it suffices to show that

H1(π−1(Uσj
),I ) = H1(π−1(Uσj

),OX) = 0, for j = 0, 1.

Since π−1(Uσj
) is covered by

{
Ujk := Uσj

×Uσ Uσ′
k

}
k=0,1

, by Čech cohomology, it suffices to show
that

H0(Uj0,I )⊕H0(Uj1,I ) −! H0(Uj0 ∩ Uj1,I ) = H0(Uσj
×Uσ Uσ′

0∩σ′
1
,I ) (6)

H0(Uj0,OX)⊕H0(Uj1,OX) −! H0(Uj0 ∩ Uj1,OX) = H0(Uσj
×Uσ Uσ′

0∩σ′
1
,OX) (7)

are surjective.

By the relation a0v0 + a1v1 = bw0 + w1, we have (σ′
0 ∩ σ′

1)
∨ = σ

′∨
0 ∪ σ

′∨
1 , and thus

0! C[σ′∨
0 ∩ σ

′∨
1 ∩M ]! C[σ′∨

0 ∩M ]⊕ C[σ′∨
1 ∩M ]! C[(σ′

0 ∩ σ′
1)

∨ ∩M ]! 0. (8)

Since (7) is equal to the last morphism in (8) tensoring C[σ∨
j ∩M ] over C[σ∨∩M ], we conclude

that (7) is surjective.

Using the same notation in the proof of Theorem 3.1, let

σ∨ ∩M = Z≥0X , σ∨
j ∩M = Z≥0(X ∪ Y), σ

′∨
k ∩M = Z≥0(X ∪ Zk),

and let I, Jk, K be the toric ideals of X ∪Y , X ∪Zk, X ∪Z0∪Z1 respectively. According to the
proof of Theorem 3.1,

√
I +K is the “toric ideal” of X ∪Y ∪Z0 ∪Z1. Hence

√
I +K/(I +K)

is generated by Y0Z0 − Y1Z1, where yi ∈ Z≥0Y , zi ∈ Z≥0(X ∪ Z0 ∪ Z1).

If z0, z1 ∈ Z≥0(X ∪ Zk) for some k ∈ {0, 1}, then Y0Z0 − Y1Z1 ∈
√
I + Jk/(I + Jk) maps

to Y0Z0 − Y1Z1 ∈
√
I +K/(I +K).

If not, we can assume that zi ∈ Z≥0(X ∪ Zi) and then

y0 + z0 = y1 + z1 ∈ (σ∨
j + σ

′∨
0 ) ∩ (σ∨

j + σ
′∨
1 ) ∩M = σ∨

j ∩M = Z≥0(X ∪ Y),

say y0 + z0 = y1 + z1 = y2 + x2, where y2 ∈ Z≥0Y and x2 ∈ Z≥0X . We have that

(Y0Z0 − Y2X2, Y1Z1 − Y2X2) 7! Y0Z0 − Y1Z1,
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so (6) is surjecitve.

Note that
0! π∗I ! π∗OX ! π∗OXred ! R1π∗I = 0. (9)

By Corollary 3.1 and the proof of Theorem 2.2, Xred = XΣ̃ is integral. By the proof of Zariski
main theorem in [Har77], π∗OXred = OXΣ

. By functoriality, the morphism between structure
sheaves OXΣ

! π∗OX gives a lifting of (9), and thus the short exact sequence (9) splits.

Now the remaining part is to prove that π∗I = 0. By definition and R1π∗OX = 0, we
have

0! OX(π
−1Uσi

)! OX(Ui0)⊕OX(Ui1)! OX(Uσi
×Uσ Uσ′

0∩σ′
1
)! 0,

or rewrite it as

0 −! C[σ∨
i ∩M ]⊕ Γ(π∗I , Uσi

)

−! C[σ∨
i ∩M ]⊗C[σ∨∩M ]

(
C[σ′∨

0 ∩M ]⊕ C[σ′∨
1 ∩M ]

)
α
−! C[σ∨

i ∩M ]⊗C[σ∨∩M ] C[(σ′
0 ∩ σ′

1)
∨ ∩M ]! 0. (10)

From the long exact sequence induced by (8) ⊗C[σ∨∩M ] C[σ∨
i ∩M ], the kernel of α is

C[σ∨
i ∩M ]

/
Im

(
TorC[σ

∨∩M ]
1 (C[(σ′

0 ∩ σ′
1)

∨ ∩M ],C[σ∨
i ∩M ])! C[σ∨

i ∩M ]
)
.

So we can conclude that Γ(π∗I , Uσi
) = 0. Hence π∗I |Uσi

= 0 for i = 0, 1, that is, π∗I = 0.

Proof: (of Theorem 4.1) Suppose that U00 is reduced. By Remark 4.1, U10 is also reduced,
and thus

Supp I ⊆ (Z ×S Z ′)red \ (U00 ∪ U10) = (π′)−1(p),

where p is the unique point in V (σ′
0 ∩ σ′

1) \ Uσ′
0
= V (σ′

1). Note that (Z ×S Z ′)red = P1 × P1,
and π|P1×P1 and π′|P1×P1 are projection onto each component. We take a section s : Z = P1 ∼

−!

(π′)−1(p)red = P1 such that π ◦ s = idZ . Let F = (s−1)∗ι
′−1I be the sheaf on Z, where

ι′ : (π′)−1(p)red ↪! X. Since I has the support on (π′)−1(p)red and by Lemma 4.2, we have

ι∗F = π∗ι
′
∗s∗(s

−1)∗ι
′−1I = π∗I = 0,

where ι : Z ↪! XΣ. This implies F = 0, and thus I = 0, i.e., X is reduced.
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